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I. INTRODUCTION

High-end computing clusters are becoming increasingly
heterogeneous and include a variety of compute components,
ranging from standard CPUs to highly parallel accelerators.
Such increasing heterogeneity is driven by the need to better
exploit data-level parallelism in existing and future codes and
to account for a paradigm shift in high-performance computing
(HPC) workloads that are moving from simulations to more
complex workflows involving data ingestion, generation, and
analysis, for example, deep learning applications [1].

The massive parallelism offered by accelerators exacerbates
the performance gap between computation and memory, with
the memory subsystem that has to supply (absorb) data into
(from) an ever-larger number of cores concurrently. For this
reason the memory architecture of HPC systems is transi-
tioning from homogeneous configurations, characterized by
single DRAM technology, to heterogeneous configurations
comprising standard DRAM as well as on-package high-
bandwidth memory (HBM) based on 3D stacked DRAM
technology [2]. Future architectures will likely include a range
of diverse memory components such as HBMs and byte-
addressable nonvolatile memories.

Accelerators that integrate HBMs include the Intel Knights
Landing (KNL) processors [3], the second generation of the
Xeon Phi Many Integrated Core architecture, and the NVIDIA
Tesla P100 [4]. Memory heterogeneity exposed by these accel-
erators introduces further complexity that has to be taken into
account by programmers when striving for high performance
in their codes. In fact, HBMs are limited in capacity compared
with DRAM memory, and not all applications can equally
benefit from them; overall, performance strongly depends on
the way data is laid out and accessed.

Previous studies [5] [6] [7] have shown that the performance
of bandwidth-bound applications can be improved whenever
the HBM’s capacity is sufficient to accommodate sensitive data
structures. If memory requirements cannot be fully satisfied,
the user has to decide what data placement strategy to adopt
in order to achieve the best results. All these studies, however,
lack a fine-grained analysis of the effects that HBMs have on
communication libraries such as MPI. Indeed, MPI internally
allocates and manages memory objects for a variety of reasons,
including efficient intranode communication support. In this
case the way the library places its internal objects in memory
becomes relevant from a performance standpoint. If on the
one hand appropriate placement of MPI objects in HBM can

boost the library performance, on the other hand this carves
into the available memory budget, reducing the amount of
space accessible to the user’s data and potentially degrading
the overall performance.

To fill the gap left in the literature, we have studied
the impact that HBMs have on MPI communications and
corresponding memory usage. Our contributions to the state
of the art are as follows.

• We have prototyped HBM support into MPI for different
types of intranode communication mechanisms, including
point-to-point (pt2pt) and remote memory access (RMA).
We have used a combination of microbenchmarks and
miniapplications to evaluate the effect of HBM on per-
formance for different memory placement strategies of
MPI internal objects.

• Based on our findings, we have compiled a list of
recommendations for programmers that will be useful for
further tuning their codes through optimal configuration
of the MPI library. Our recommendations depend on
both the analysis of performance-critical memory objects,
along with their placement in physical memory, and the
resulting memory usage requirements. This last aspect
is particularly important because it can also affect the
application’s overall performance.

In our study we have used the Intel KNL processor, avail-
able in the Joint Laboratory for System Evaluation [8] at
Argonne National Laboratory, and the MPICH [9] implemen-
tation of the MPI standard, developed at Argonne.

II. EVALUATION

The CH3 device in MPICH supports shared-memory com-
munication for both pt2pt and RMA operations. For pt2pt
the library uses two separate protocols: Eager for short
messages and Rendezvous for long ones. Eager employs pre-
allocated shared-memory buffers called Fastboxes and non-
blocking message queues (or Cells), while rendezvous also
employs apposite buffers (Copy Buffers) created for the op-
eration and destroyed afterwards. RMA operations expose
a separate memory region (or window) that can be allo-
cated in shared memory when MPI_Win_allocate or
MPI_Win_allocate_shared is used.

We evaluated the impact of HBM on intranode shared-
memory communication by allocating the aforementioned
buffer resources in KNL Multi-Channel DRAM (MCDRAM).
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Fig. 1: Benchmark results for osu put mbw (1a) and osu get mbw (1b) for 32 pairs. Lowercase indicates DRAM placement
and uppercase MCDRAM placement.

Figure 1 shows bandwidth performance for OSU mi-
crobenchmarks multi-MPI_Put (1a) and MPI_Get (1b) tests
when 32 pairs of processes are used. The two tests are similar:
put operations load data from the user buffer (origin) and
store it in the shared-memory window buffer (target), and
get operations load data from the shared-memory window
buffer and store it to the user buffer. However, the most
performance-critical object for RMA operations is the store
buffer (i.e., the target buffer in put operations and the origin
buffer in get operations). In fact, placing this in MCDRAM can
boost the bandwidth of put operations by up to 105%. Similar
performance improvements can be measured for multilatency
tests (not shown).
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Fig. 2: Benchmark results for osu mbw mr for 32 pairs. Here
“f” stands for fastboxes, “c” for cells, and “cb” for copy
buffers. Lowercase indicates DRAM placement and uppercase
MCDRAM placement.

Pt2pt operations have more limited performance improve-
ments because data has to be first copied into the preallocated
shared-memory buffers inside the library and from there to the

target user buffers (Figure 2). Again, similar performance can
be measured for multilatency tests (not shown).

According to the microbenchmarks results and taking into
consideration the limited capacity of MCDRAM (only 16 GB
in this case), the following recommendations can be made.
For RMA, memory should be allocated by using MPI al-
location functions, as described above, whenever possible
since communication can be greatly improved (especially for
put operations). For pt2pt communication, memory cannot
be allocated and freed by the program itself but is instead
preallocated by the library at init time. In this case, the
library memory footprint has to be understood and taken into
consideration beforehand.
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